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Abstract

We study two design criteria for classification: the Neyman–Pearson criterion and a min–max
criterion. For each we prove a lemma bounding estimation error in terms of error deviance. We
then show how these lemmas can be used to determine probabilistic guarantees on estimation
error.
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1 Introduction

Consider a set X, a finite set Y , and a probability space Z = X×Y and let z = (x, y) denote the
corresponding random variable with probability measure P, conditional probability measures
Py and y-marginal probability measure P . Although the results of this paper are quite general,
for exposition purposes we consider the classification problem. In particular, let F denote a
class of functions( classifiers) f : X → Y . The generalization error of the classifier f is defined
as

e(f) = P(f(x) 6= y).

We now suppose that n samples are taken from Z. We refer to the vector (z1, z2, .., zn) of n
samples as an n-sample in Zn. The most common way of selecting n-samples is independent
identically distributed ( i.i.d.) sampling but we shall use others in this paper such as retro-
spective sampling. Consequently, to distinguish the measure used to describe the sample plan
from the measure used to compute generalization error, we denote the probability measure on
Zn corresponding to the sample plan as PS . When the sample plan is i.i.d from P, we define
the empirical error in terms of an n-sample as the fraction of misclassified data samples

ê(f) =
1
n

n∑
i=1

I
(
f(xi) 6= yi

)
.

The most common goal in classification is to select a classifier from F

f∗ ∈ arg min
f∈F

e(f) (1)

that minimizes the generalization error e(f). Throughout this paper we ignore questions of
whether minima or maxima are actually attained. This detail is easy to include by introducing
approximation parameters and approximate minima/maxima but obscures the presentation.
Suppose we employ the well–known design strategy that chooses a classifier

f̂ ∈ arg min
f∈F

ê(f) (2)

that minimizes the empirical error ê(f). The difference

e(f̂)− e(f∗)

between the generalization error of the chosen classifier and the optimal generalization error
for the family F is called the estimation error and the largest possible absolute difference

sup
f∈F
|e(f)− ê(f)|

between the generalization error and the empirical error is called the error deviance. A lemma
of (Vapnik & Chervonenkis, 1974) states that

e(f̂)− e∗ ≤ 2 sup
f∈F
|e(f)− ê(f)|.
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That is, the estimation error of a classifier designed by minimizing the empirical error is bounded
by twice the error deviance. This lemma allows results on the convergence of empirical processes
to generate probabilistic guarantees on the estimation error, such as the celebrated Vapnik–
Chervonenkis theorem. Because this simple lemma transforms results from empirical process
theory, for which much is known, to results about a learning paradigm, we refer to this lemma
as a fundamental lemma.

In this paper we provide fundamental lemmas for the Neyman–Pearson and min–max error
criteria for classifiers built by minimizing empirical versions of these criteria. We then show
how these lemmas lead to probabilistic guarantees on the estimation error for such classifiers.
We ignore questions of measurability.

2 The Neyman–Pearson Problem

In this section we let Y = {0, 1} and we define the class conditional errors ei by

ei(f) = Pi(f(x) 6= i), i ∈ Y.

The Neyman–Pearson problem is motivated by real world scenarios where it is important that
one of these errors be no greater than some fixed value. For example in fraud detection the
classification system often has no utility unless the false alarm rate (i.e. the rate at which
fraudulent activity is predicted when it is not present) can be kept below a fixed level. In the
Neyman–Pearson problem we impose a this type of constraint on one of the errors and optimize
the other. The version of the Neyman–Pearson problem we treat here is( see e.g. (Van Trees,
1968))

minf∈F1 e0(f)
where F1 = {f : f ∈ F , e1(f) ≤ α}

(3)

for some α ∈ [0, 1]. We would like to formulate an empirical optimization problem in such a
way that we can bound the estimation error of its solution. To this end let ê0 and ê1 be the
class conditional empirical errors defined by

êi(f) =
1
ni

∑
j:yj=i

I(f(xj) 6= i),

where ni is the number of points from zn with y = i. We start by considering the almost
obvious empirical optimization problem

minf∈F̂1
ê0(f)

where F̂1 = {f : f ∈ F , ê1(f) ≤ α}.
(4)

Let f̂ be a solution to (4) and let e∗0 = inff∈F1 e0(f) be the optimal error. In the Neyman–
Pearson problem we are concerned with two estimation errors, e0(f̂) − e∗0 and e1(f̂) − α. We
would like these to be small simultaneously. In addition, although we may encounter solutions
where one of the two is negative we are only concerned with their size when they are positive.
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Although we cannot guarantee with certainty that a solution f̂ to this problem satisfies the
constraint e1(f̂) ≤ α, we may increase the probability of this event by changing the constraint
in (4) to ê1(f̂) ≤ ά where ά < α. In doing so however we may restrict the size of F̂1 which in
turn may lower the probability that e0(f̂) is small. In fact with ά < α it seems unlikely that
we can control the estimation error e0(f̂)− e∗0 in a distribution independent way. On the other
hand we can control the estimation error in a rather straightforward manner if we allow ά to
be slightly larger than α. That is, for a small price in the asymptotic value of the class 1 error
we can obtain rates of convergence for both estimation errors simultaneously. We accomplish
this by choosing ά = α + ε1/2 for some small ε1 > 0 and now let our candidate classifier f̂
denote a solution of the slightly modified optimization problem

minf∈F̂1
ê0(f)

where F̂1 = {f : f ∈ F , ê1(f) ≤ α+ ε1/2}.
(5)

and then derive bounds for

PS
((
e0(f̂)− e∗0 > ε0

)
or
(
e1(f̂) > α+ ε1

))
.

Although the Neyman–Pearson criterion ignores the class marginals the performance may
not. This depends on how the n data samples are collected. The following fundamental lemma
does not depend on the sample plan. That will become important later when we turn the
consequences of this lemma into bounds on estimation error.

Lemma 1. Consider two sets X and Y. Let e0 : X → < and e1 : X → < denote two real
univariate functions and let ê0 : X × Y → < and ê1 : X × Y → < denote two real bivariate
functions.

Let ε0 > 0, ε1 > 0, and α ≥ 0 be fixed and define

X1 = {x ∈ X : e1(x) ≤ α}
X̂1 = {x ∈ X : ê1(x, y) ≤ α+ ε1/2},

where we note that X̂1 is a y-dependent subset of X .

Let

x∗ ∈ arg min
x∈X1

e0(x)

x̂∗(y) ∈ arg min
x∈X̂1

ê0(x, y)

where we write x̂∗(y) to emphasize that it is a function of y. Define the sets

Θ0 = {y : e0(x̂∗(y))− e0(x∗) > ε0}

Θ1 = {y : e1(x̂∗(y)) > α+ ε1}
Ω0 = {y : sup

x∈X1

|e0(x)− ê0(x, y)| > ε0/2}

Ω1 = {y : sup
x∈X1

|e1(x)− ê1(x, y)| > ε1/2}.

Then

Θ0 ∪Θ1 ⊂ Ω0 ∪ Ω1.

3
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Proof. Define the sets

C = {y : ê1(x∗, y) > α+ ε1/2} and C̄ = {y : ê1(x∗, y) ≤ α+ ε1/2}.

Then

Θ0 ∪Θ1 = (Θ0 ∩ C̄) ∪ (Θ0 ∩ C) ∪Θ1 ⊂ (Θ0 ∩ C̄) ∪ C ∪Θ1 . (6)

We consider the three terms on the right hand side separately. For the first term Θ0 ∩ C̄, C̄
implies that ê1(x∗, y) ≤ α + ε1/2 which implies that x∗ ∈ X̂1 and consequently ê0(x∗, y) ≥
ê0(x̂∗(y), y). Therefore

e0(x̂∗(y))− e0(x∗) = e0(x̂∗(y))− ê0(x̂∗(y), y) + ê0(x̂∗(y), y)− e0(x∗)
≤ e0(x̂∗(y))− ê0(x̂∗(y), y) + ê0(x∗, y)− e0(x∗)
≤ 2 supx∈X1

|e0(x)− ê0(x, y)|.

and so

Θ0 ∩ C̄ ⊂ Ω0. (7)

For the second term C,

ê1(x∗, y) > α+ ε1/2

if and only if

ê1(x∗, y)− e1(x∗) > α+ ε1/2− e1(x∗),

but since x∗ ∈ X1 implies that e1(x∗) ≤ α we obtain

α+ ε1/2− e1(x∗) ≥ α+ ε1/2− α = ε1/2.

Consequently

C ⊂ {y : ê1(x∗, y)− e1(x∗) > ε1/2} ⊂ Ω1. (8)

For the third term Θ1,

e1(x̂∗(y)) > α+ ε1

if and only if

e1(x̂∗(y))− ê1(x̂∗(y), y) > α+ ε1 − ê1(x̂∗(y), y),

but since x̂∗(y) ∈ X̂1 implies that ê1(x̂∗(y), y) ≤ α+ ε1/2 we obtain

α+ ε1 − ê1(x̂∗(y), y) ≥ α+ ε1 − (α+ ε1/2) = ε1/2.

Consequently,

Θ1 ⊂ {y : e1(x̂∗(y))− ê1(x̂∗(y), y) > ε1/2} ⊂ Ω1. (9)

The proof is completed by substituting (7),(8), and (9) into (6). �
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We can now prove a corollary which will be our basic tool.

Corollary 1. Let ε0 > 0, ε1 > 0, and α > 0 be fixed and let f∗ be a solution of the Neyman-
Pearson problem ( 3). Consider any sample plan S for generating n-samples and given an
n-sample let f̂ be a solution to the modified empirical Neyman-Pearson problem ( 5). Then

PS
((
e0(f̂)− e0(f∗) > ε0

)
or
(
e1(f̂) > α+ ε1

))
≤

PS
(

sup
f∈F
|e0(f)− ê0(f)| > ε0/2

)
+ PS

(
sup
f∈F
|e1(f)− ê1(f)| > ε1/2

)

Proof. Applying lemma 1 with X = F and Y = Zn and using a union bound on the two
resulting sets finishes the proof. �

We now get more specific about the sample design S. Theorem 1 provides bounds for
estimation error for retrospective sampling and Theorem 2 for i.i.d. sampling.

Theorem 1. Under the assumptions of Corollary 1, consider the retrospective sample plan S.
That is we choose n0 samples with y = 0 i.i.d. with respect to P0 and n1 samples with y = 1
i.i.d. with respect to P1 where n = n0 + n1. Suppose that ni ≥ 2

ε2
, i = 0, 1. Then

PS
((
e0(f̂)− e0(f∗) > ε0

)
or
(
e1(f̂) > α+ ε1

))
≤

8nV (F)
0 e−n0ε20/128 + 8nV (F)

1 e−n1ε21/128.

where V (F) is the Vapnik-Chervonenkis dimension of F .

Proof. With the retrospective sample plan PS = Pn0
0 P

n1
1 , so the right hand side of Corollary 1

satisfies

PS
(

sup
f∈F
|ei(f)− êi(f)| > ρ

)
= Pnii

(
sup
f∈F
|ei(f)− êi(f)| > ρ

)
.

The proof then follows directly from the empirical process convergence theorem of (Vapnik &
Chervonenkis, 1974)

Pm(sup
f∈F
|e(f)− ê(f)| > ε) ≤ 8mV (F)e−mε

2/32 (10)

when m ≥ 2
ε2

(see also (Devroye, Györfi, & Lugosi, 1996; Vapnik, 1998)). �

We now address i.i.d sampling. Then ni are random variables, but we use their concentra-
tion about their means to obtain a similar result. We utilize the following lemma.
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Lemma 2. Let Z = (X,Y ) be a probability space where Y = {0, 1}, with probability measure
P, conditional probability measure P0 = P(·|y = 0) and marginal p = P (y = 0). Let z = (x, y)
denote the corresponding random variable. Let ρ > 0. Let zn = {zi, i = 1, .., n} ∈ Zn denote
an i.i.d. n-sample with n ≥ 10

√
5

p2ρ2 . Let F be a class of functions f : X → Y and let

e0(f) = P0

(
f(x) 6= 0

)
ê0(f) =

1
n0

∑
j:yj=0

I(f(xj) 6= 0)

where n0 denotes the number of samples with y = 0. Then

PS
(

sup
f∈F
|e0(f)− ê0(f)| > ρ

)
≤ 10(2n)V (F)e

−np
2ρ2

160
√

5 .

Proof. Define the sets

A =

{
zn : sup

f∈F
|e0(f)− ê0(f)| > ρ

}

B =
{
zn :

∣∣∣n0

n
− p
∣∣∣ > pγ

}
for some 1 ≥ γ ≥ 0 to be determined. Then

PS(A) = PS(A|B)PS(B) + PS(A|B̄)PS(B̄)
≤ PS(B) + PS(A|B̄)

(11)

Since n0 is a binomially distributed random variable with parameters n and p, we can use the
bound of (Chernoff, 1952) (see also Chapter 8 in (Devroye et al., 1996)) to obtain

PS(B) = PS
(∣∣∣n0

n
− p
∣∣∣ > pγ

)
≤ 2e−2np2γ2

(12)

To bound the term PS(A|B̄) let

M =
{
m :

∣∣∣m
n
− p
∣∣∣ ≤ pγ}

so that

np(1− γ) ≤ m ≤ np(1 + γ), m ∈M. (13)

We suppose for the moment that

np(1− γ) ≥ 2
ρ2
. (14)

Then by the VC theorem (10) we can bound

PS(A|B̄) =
∑
m∈M PS

(
supf∈F |e0(f)−ê0(f)|>ρ

∣∣n0=m

)
P (n0=m)∑

m∈M P (n0=m)

≤ maxm∈M Pn0
0

(
supf∈F |e0(f)− ê0(f)| > ρ

∣∣n0 = m
)

≤ maxm∈M
(

8mV (F)e−mρ
2/32

)
.

(15)

6
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Let ml = np(1− γ) be a lower bound on the smallest member of M and mu = np(1 + γ) be an
upper bound on the largest member of M so that

max
m∈M

(
8mV (F)e−mρ

2/32
)
≤ 8mV (F)

u e−mlρ
2/32.

Substituting this into (15) and combining with (12) and (11) gives

PS(A) ≤ 2e−2np2γ2
+ 8
(
np(1 + γ)

)V (F)
e−np(1−γ)ρ2/32. (16)

A larger γ makes the first term smaller and the second term larger. We choose γ to
approximately equate the two exponentials by solving

p2γ2 = p(1− γ).

We use the solution γ = −1+
√

1+4p
2p and simplify the resulting exponentials by bounding

p2γ2 = p(1− γ) =
1
2

(1 + 2p−
√

1 + 4p)

from below. To do this we denote f(p) = 1 + 2p−
√

1 + 4p and note that f(0) = ḟ(0) = 0 and
f̈(p) = 4(1 + 4p)−

3
2 ≥ 4

5
√

5
for 0 ≤ p ≤ 1. Therefore by Taylor’s theorem

f(p) ≥ 2
5
√

5
p2

so that with this choice of γ

p2γ2 = p(1− γ) ≥ p2

5
√

5
.

Consequently, from the assumption n ≥ 10
√

5
p2ρ2 of the lemma, (14) is satisfied. In addition we

can also bound

p(1 + γ) ≤ 2.

Since ρ2

32 ≤ 2 we can now simplify the inequality (16) to obtain

PS(A) ≤
(
2 + 8(2n)V (F)

)
e
−np

2ρ2

160
√

5 ≤ 10(2n)V (F)e
−np

2ρ2

160
√

5

and the proof is finished.

�

We can now prove

Theorem 2. Under the assumptions of Corollary 1, consider taking n i.i.d. samples with
n ≥ 10

√
5

p2
i ε

2
i
, i = 0, 1 where pi = P (y = i) are the class marginals. Then

PS
((
e0(f̂)− e0(f∗) > ε0

)
or
(
e1(f̂) > α+ ε1

))
≤

10(2n)V (F)
(
e
− np

2
0ε

2
0

640
√

5 + e
− np

2
1ε

2
1

640
√

5
)
.

7
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Proof. We apply Corollary 1 and apply Lemma 2, with respect to both y = 0 and y = 1, to
the consequential terms and the proof is finished. �

3 The min–max Problem

In this section we introduce and analyze a min–max criterion that forms the foundation for a
learning paradigm we call, following (Huber, 1972), robust machine learning. We start with a
very general setting that includes the design of all types of predictors (not just classifiers). In
this setting the design criterion e is defined in terms of an unknown parameter q and we wish
to design a predictor that is robust to its value. The min–max approach consists in designing
the predictor by solving

min
f∈F

max
q∈Q

e(f, q). (17)

Let us suppose that we can solve this min–max problem with a solution f∗ and optimal value
e∗. Then for whatever value q that is chosen, by nature or the opponent, we are guaranteed
that

e(f∗, q) ≤ e∗.

Therefore, although such a guarantee may not be nearly as good as one could get if one knew
q, it is protection against possible catastrophic losses obtainable when designing a classifier
by minimizing e(f, q) with the incorrect value of q. This standard game theoretic argument
changes when we discuss learning from samples. Indeed, then we need to specify both the
sample design and the empirical loss function ê(f, q) as a function of the n-sample for every
q ∈ Q. Although there appears to be no general way of doing this, we discuss three situations
where we know how to proceed and analyze the third in some detail.

In the first case let us consider where q represents some information about the measure
P. To emphasize this dependence we write Pq. For exposition purposes let us consider clas-
sification. Suppose now the sample plan samples i.i.d. from Pqsample but the generalization
error is computed on future data where the q has drifted to some qfuture. We do not know
qsample and qfuture but know that the drift is less than ε in some metric d on Q. That is,
d(qsample, qfuture) ≤ ε. Given an n sample zn from Pqsample we would like to compute a rea-
sonable empirical approximation ê(f, qfuture). Although we do not know anything about this
problem in general we do know a way to proceed when q is the x mean and d is determined by
a norm | · |. Then to compute ê(f, q) for all q with d(qsample, q) ≤ ε we could compute the usual
empirical error with respect to the shifted n-sample

(
(x1 + δq, y1).(x2 + δq, y2, .., (xn + δq, yn)

)
for all δq with |δq| ≤ ε and call this ê(f, qsample + δq). We could then solve

min
f∈F

max
|δq|≤ε

ê(f, qsample + δq) (18)

and try to prove guarantees about the generalization error compared to the optimal e∗(qfuture)
at qfuture.

In the second case, the sample plan S is i.i.d. from some unknown measure P and the model
error is determined by integration of a loss function with respect to the same P but the loss

8
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function is specified in terms of a parameter q ∈ Q. This format is useful when the customer
wants the practicioner to build a model but cannot seem to specify a loss function. We could
call this a technique for building models that are robust to customer capriciousness.

The third and most common case is when q represents the class marginals in classification
and the sample plan is retrospective. We discuss this situation in more detail in the next
section. First we have more to say about the general situation.

We now consider where we wish to solve the min–max problem (17). We collect n samples
through some sample plan S, determine an empirical version ê of the loss e in some way and
approximately solve this min–max problem by solving its empirical version

min
f∈F

max
q∈Q

ê(f, q). (19)

We would like guarantees on how close the approximate solution is to a true solution of (17).

The main tool we use is the following fundamental lemma for min–max. It is important
to observe that although we utilize this lemma in learning, it is a much more general fact
concerning how well a solution to a nearby min–max problem solves a min–max problem.

Lemma 3. Consider two sets X and Y and let e : X ×Y → < and ê : X ×Y → < denote two
real bivariate functions. Let

e∗ = min
x∈X

max
y∈Y

e(x, y) (20)

and

e∗ = max
y∈Y

min
x∈X

e(x, y) (21)

denote the min–max and max–min values respectively, and let x̂ be a solution to the approximate
min–max problem

min
x∈X

max
y∈Y

ê(x, y). (22)

Then for any y ∈ Y

e(x̂, y)− e∗ ≤ 2 sup
x,y
|e(x, y)− ê(x, y)| (23)

and there exists a y∗ such that

e∗ ≤ e(x̂, y∗) ≤ e∗ + 2 sup
x,y
|e(x, y)− ê(x, y)|. (24)

Proof. Let ê∗ denote the value of (22). Decompose

e(x̂, y)− e∗ = e(x̂, y)− ê(x̂, y) + ê(x̂, y)− e∗ (25)

and bound the last two terms ê(x̂, y)− e∗. Since

ê(x̂, y) ≤ max
y∈Y

ê(x̂, y) = ê∗,

9
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ê(x̂, y)− e∗ ≤ ê∗ − e∗

we only need to control ê∗ − e∗. Now

ê∗ − e∗ = min
x∈X

max
y∈Y

ê(x, y)−min
x∈X

max
y∈Y

e(x, y) ≤ max
y∈Y

ê(x∗, y)−max
y∈Y

e(x∗, y).

Let ȳ denote a solution to

max
y∈Y

ê(x∗, y) = ê(x∗, ȳ).

Then

max
y∈Y

ê(x∗, y)−max
y∈Y

e(x∗, y) ≤ ê(x∗, ȳ)− e(x∗, ȳ)

so that substitution into (25) gives

e(x̂, y)− e∗ ≤ e(x̂, y)− ê(x̂, y) + ê(x∗, ȳ)− e(x∗, ȳ)

≤ sup
x,y

(e(x, y)− ê(x, y)) + sup
x,y

(ê(x, y)− e(x, y))

= sup
x,y

(e(x, y)− ê(x, y))− inf
x,y

(e(x, y)− ê(x, y))

≤ 2 sup
x,y
|e(x, y)− ê(x, y)|

and the first statement is proved. To prove the second statement we define y∗ to be a solution
of the max–min problem (21) and observe that

e∗ = max
y∈Y

min
x∈X

e(x, y) = min
x∈X

e(x, y∗) ≤ e(x̂, y∗).

�

We are now in a position to prove a corollary which will be our main tool in providing
performance guarantees for min–max.

Corollary 2. Let e∗ denote the value of the min–max problem ( 17), e∗ = maxq∈Q minf∈F e(f, q)
the value of the max–min problem, and let a sample plan S be specified. For a given n-sample
let f̂ denote a solution of the empirical min–max problem ( 19). Then for any q and any ε > 0

PS
(
e(f̂ , q)− e∗ > ε

)
≤ PS

(
sup

f∈F ,q∈Q
|e(f, q)− ê(f, q)| > ε/2

)
and there exists a q∗ such that

PS
(
e∗ ≤ e(f̂ , q∗) ≤ e∗ + ε

)
≥ PS

(
sup

f∈F ,q∈Q
|e(f, q)− ê(f, q)| ≤ ε/2

)
.

Proof. The proof follows directly from Lemma 3 with the choices X = F and Y = Q. �

10
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3.1 Min–max Over Class Marginals

To utilize Corollary 2 for performance guarantees more structure needs to be specified. Here we
show how to treat the most common min–max problem. In particular, we consider classification
with M = |Y | classes, where the sample design is retrospective and we have no information
about the Y marginals. Let

Q = {(q1, q2, ..., qM ) : qi ≥ 0,
M∑
i=1

qi = 1}.

If the Y marginals were q ∈ Q, then the generalization error

e(f, q) =
M∑
i=1

ei(f)qi,

where we recall the conditional class error functions

ei(f) = Pi
(
f(x) 6= i

)
, i = 1, ..,M.

For the retrospective sample with ni samples in class i ∈ Y we let the empirical error be defined
in the natural way

ê(f, q) =
M∑
i=1

êi(f)qi

where we use the empirical conditional class errors

êi(f) =
1
ni

∑
j:yj=i

I(f(xj) 6= i), i = 1, ..,M.

Although this definition seems sensible, it depends upon the class marginals q ∈ Q. Therefore
any classifier built by minimizing this empirical error will depend on our choice of q. Since we
evaluate the performance of a classifier with a specific unknown q chosen by nature, we would
like build a classifier that will not suffer too much from an adversarial nature. One way to
accomplish this is through the min–max technique. Due to the structure of these loss functions,
the min–max (17) and empirical min–max (19) problems become

min
f∈F

max
i∈Y

ei(f) (26)

and

min
f∈F

max
i∈Y

êi(f). (27)

We now state a performance bound for this min–max problem.

11
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Theorem 3. Consider a retrospective sample plan S of size n with ni samples drawn i.i.d. from
Pi. Let e∗ denote the value of the min–max problem ( 26), e∗ = maxq∈Q minf∈F

∑M
i=1 ei(f)qi the

value of the max–min problem, and let f̂ denote a solution to the empirical min–max problem
( 27). Let Fi, i = 1, ..,M denote the space F mapped in the natural way to binary classifiers i
or not i. Then for any q ∈ Q,

PS
( M∑
i=1

ei(f̂)qi − e∗ > ε
)
≤M max

i∈Y
n
V (Fi)
i e−niε

2/128 (28)

and there exists a q∗ ∈ Q such that

PS
(
e∗ ≤

M∑
i=1

ei(f̂)q∗i ≤ e∗ + ε
)
≥ 1−M max

i∈Y
n
V (Fi)
i e−niε

2/128.

Proof. The proof follows from Corollary 2 and

PS
(

sup
f∈F

max
i∈Y
|ei(f)− êi(f)| > ε/2

)
≤M max

i∈Y
PS
(

sup
f∈F
|ei(f)− êi(f)| > ε/2

)
= M max

i∈Y
Pnii

(
sup
f∈Fi
|ei(f)− êi(f)| > ε/2

)
≤M max

i∈Y
n
V (Fi)
i e−niε

2/128,

where the last line follows from the VC theorem (10). �
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